Техническое обслуживание средств автоматизации в химической промышленности. Автоматизация технологических процессов и производств химической промышленности. Рассмотрим некоторые особенности химических производств

1.Задача автоматизации объектов химической промышленности.

Автоматизация – применение комплекса средств, позволяющих осуществить производственные процессы без непосредственного участия человека, но под его контролем.Автоматизация производственных процессов создает определенные технико-экономические преимущества во всех отраслях современного народного хозяйства страны.

В первую очередь изменяются характер и условия труда на производстве. Сокращаются до минимума трудовые затраты человека, снижается психологическая нагрузка, на его долю остаются лишь функции по перенастройке автоматических систем на новые режимы и участие в ремонтно-наладочных работах. Уменьшается число обслуживающего персонала и затраты на его содержание. С внедрением средств автоматизации неизбежно повышается производительность труда. Внедрение автоматизации в различных отраслях промышленности дает повышение производительности труда в среднем в 2...2,5 раза. В результате автоматизации снижается себестоимость изделий, увеличивается выпуск продукции, повышается ее качество, уменьшаются брак и отходы производства, сокращаются расходы на заработную плату, сырье, материалы и т. п. При этом решающим фактором является снижение расхода топлива, тепловой и электрической энергии. Использование средств автоматизации увеличивает надежность оборудования, точность производства, безопасность труда. Появляется возможность использовать высокоэффективные технологические процессы и устройства, характер применения которых исключает участие человека (ядерная энергетика, химическое производство и т. п.). Но, пожалуй, главным является то, что автоматизация повышает эффективность и упорядоченность производства. Процесс управления противостоит неупорядоченности, и в этом отношении использование автоматики решающим образом стабилизирует производство. Внедрение автоматизации приносит и косвенный эффект, так как увеличение производительности оборудования, экономия ресурсов эквивалентны строительству добавочных производственных мощностей. Экономия рабочей силы позволяет более рационально использовать трудовые ресурсы, а улучшение качества продукции способствует экономии топлива, энергии, материалов и т. д.Важнейший вопрос автоматизации - установление ее рационального уровня и объема, которые должны быть тщательно экономически обоснованы, и определение методов и средств автоматизации.

Автоматика - отрасль теоретических и прикладных знаний об устройствах и системах, действующих без прямого участия человека.Автомат (от греч. automates – самодействующий) - самостоятельно действующее устройство (или совокупность устройств), выполняющее по заданной программе без непосредственного участия человека различные процессы.Автоматизированная система - совокупность управляемого объекта и автоматизированных управляющих устройств. При этом часть функций управления выполняет человек. Автоматизированная система получает информацию от объекта управления, передаёт, преобразует и обрабатывает её, формирует управляющие команды и выполняет их на управляемом объекте. Человек определяет цели и критерии управления, корректирует их, если изменяются условия.Автоматическая система - совокупность управляемого объекта и автоматических измерительных и управляющих устройств. В отличие от автоматизированной системы осуществляется без участия человека (кроме этапов запуска и наладки системы).

^ 2. Объем и степень автоматизации

Успех автоматизации в значительной степени определяется правильным выбором степени и объема автоматизации. По степени автоматизации различают объекты с частичной, комплексной и полной автоматизацией. Частичная автоматизация - первый этап автоматизации, при котором на дистанционное или автоматическое управление переводят отдельные машины, механизмы и установки, не имеющие внешние связи с другими производственными процессами. Частичная автоматизация не позволяет использовать все преимущества автоматизации, так как в технологической цепи остаются неавтоматизированные процессы. Комплексная автоматизация - второй этап автоматизации, при котором весь комплекс производственных операций, а также вспомогательные операции осуществляются по заранее разработанным программам и режимам с помощью различных автоматических устройств, объединяемых общей системой управления. При этом функции человека сводятся к наблюдению за ходом процесса, анализу его показателей и выбору режимов работы оборудования. Полная автоматизация - завершающий этап автоматизации производства, при котором система автоматических машин выполняет без непосредственного участия человека весь комплекс операций производственного процесса, включая выбор и установление режимов работы, обеспечивающих наилучшие показатели в данных условиях. Объем автоматизации определяется числом операций, процессов и устройств, управление которыми осуществляется с помощью средств автоматики. Под уровнем автоматизации понимают степень совершенства технических средств, с помощью которых осуществляется автоматизация. Степень автоматизации, ее объем и уровень выбирают для каждого объекта с обоснованием технико-экономической эффективности и возможности устранения тяжелых и вредных условий труда обслуживающего персонала.

^ 3. Классификация подсистем автоматизации

В ходе управления сложными и простыми объектами приходится осуществлять много функционально различных операций, которые выполняют разные подсистемы, входящие в общую схему автоматизации объекта. Информационные включают подсистемы технологического контроля и телеизмерения, технологической и телесигнализации. Результат действий этих подсистем адресуется оператору, а его задачей является принятие того или иного решения. Защитные подсистемы включают средства технологической и аварийной защиты, технологической и аварийной блокировки, предохраняющие технологическое оборудование от последствий неправильной эксплуатации. К управляющим относятся подсистемы телеуправления, включая дистанционное управление, телемеханические подсистемы, диспетчеризации, автоматического управления и регулирования. Основные функции подсистемы технологического контроля: а) получение количественных и качественных показателей технологического процесса - всех видов измерений с помощью контрольно-измерительных приборов (КИП); б) наблюдение за ходом технологического процесса. Разница в функциях заключается в том, что во втором случае фиксируется характер изменения величин. Для реализации функций технологического контроля применяют приборы местного и дистанционного действия, а также приборы с регистрацией. Сходные функции у подсистемы технологической сигнализации. Для нее используются те же приборы и технические средства, отличается лишь форма подачи информации в виде соответствующего сигнала. Это световая, звуковая, цветовая (изменяется цвет краски), одоризационная (появляется запах) сигнализация. Форма подачи сигналов - непрерывная и дискретная (проблесковая). Очень важно, чтобы сигнал не был пугающим и монотонным (привычным). Звуковые сигналы подаются звонками, сиренами, ревунами, зуммерами, иногда выстрелами, световые - лампами, табло, мнемосхемами. Информация должна передаваться без задержек и искажений, причем, желательно, в альтернативном виде (да - нет). Основное требование, предъявляемое к сигналам,- достаточная информативность.По функциональным признакам подсистемы сигнализации разделяют на командную, контрольную, предупредительную, аварийную и положения (для оповещения о достижении устройствами крайних или промежуточных положений).Очень важную роль играют подсистемы технологической защиты и блокировки, назначение которых состоит в защите технологического оборудования от аварийных ситуаций и нарушения режима вследствие неправильной эксплуатации совместно работающих объектов. Главными причинами нарушения режима являются: прекращение подачи сырья или энергии, а также несоблюдение синхронности работы установок.Эти подсистемы, естественно, являются автоматическими и осуществляют оперативное вмешательство для прекращения функционирования объекта в целом или его части путем останова либо переводом на холостой ход. Таким образом осуществляется блокирующее воздействие. Деблокирующее воздействие - повторный пуск после устранения причины нарушения режима. Различают объектные блокировки (автоматическая защита) и межобъектные (синхронизирующая защита). К первым можно отнести действие различного рода предохранительных устройств - клапанов, плавких предохранителей и т. д. Примером межобъектной блокировки может служить известная последовательность операций при пуске радиальных насосов: закрытие запорного органа, пуск насоса, затем открытие магистрали. Особый вид блокировки - аварийная защита, когда автоматически прекращается доступ энергии, сырья, продукта к объекту, чтобы исключить его неминуемый выход из строя. Сюда часто относят подсистемы автоматического пожаротушения и дымоудаления. Уровень оснащения объекта автоматизации различными подсистемами зависит от конкретных условий эксплуатации и нормативных документов, определяющих минимально необходимый уровень автоматизации.

^ 4.Основные понятия управления

Промышленное производство обычно подразделяется на ряд технологических процессов. Под технологическим процессом понимают совокупность механических, физико-химических и других процессов целенаправленной переработки сырья с целью получения готовой продукции. Каждый технологический процесс характеризуется определенными технологическими параметрами, которые могут меняться во времени. В химической технологии такими параметрами являются расход материальных и энергетических потоков, химический состав, температура, давление, уровень вещества в технологических аппаратах. Совокупность технологических параметров, полностью характеризующих данный технологический процесс, называется технологическим режимом. Любой технологический процесс подвержен действию различных факторов, случайных по своей природе, которые нельзя заранее предусмотреть. Такие факторы называются возмущениями. К ним относятся, например, случайные изменения состава сырья, температуры теплоносителя, характеристик технологического оборудования. Возмущающие воздействия на технологический процесс вызывают изменения технологического режима, что, в свою очередь, приводит к изменению таких технико-экономических показателей процесса, как производительность, качество продукции, расход сырья и энергии. Поэтому для обеспечения заданных (требуемых) технико-экономических показателей необходимо компенсировать колебания технологического режима, вызванные действием возмущений. Такое целенаправленное воздействие на технологический процесс представляет собой процесс управления. Совокупность требований, осуществляемых в процессе управления, называется целью управления. Сам управляемый технологический процесс вместе с технологическим оборудованием, в котором он протекает, является объектом управления. Объект управления и устройства, необходимые для осуществления процесса управления, называются системой управления.

^ 5. Иерархия управления промышленным предприятием

Современные процессы химической технологии весьма сложны и характеризуются большим числом технологических параметров, прямо или косвенно влияющих на их технико-экономические показатели. Поэтому управление химико-технологическими процессами организуют по так называемому иерархическому принципу. Иерархический принцип управления заключается в многоступенчатой организации процесса управления, где каждая ступень управления имеет свои объекты и цели управления.Структура управления современным промышленным предприятием характеризуется тремя уровнями иерархии управления (рис.1.). Нижний уровень (I) представляет собой локальные системы регулирования, функции которых сводятся к стабилизации отдельных технологических параметров. Такие простые задачи решаются автоматическими устройствами без участия человека, и поэтому системы регулирования нижнего иерархического уровня называются автоматическими системами регулирования (АСР). Объекты регулирования на этом уровне - элементарные процессы с соответствующими технологическими аппаратами.

Рис 1. Иерархия управления предприятием

Следующий иерархический уровень (II) образуют системы управления технологическими процессами. Объектами управления на этом уровне являются уже целые технологические процессы вместе с технологическим оборудованием и локальными АСР. Здесь решаются задачи оптимизации технологических режимов процессов. Кроме того, в функции управления на этом уровне входит выявление и устранение ненормальных (аварийных) режимов, переключение оборудования в технологических схемах, вычисление технико-экономических показателей процессов и т. п. Указанные функции управления относительно сложны и не могут быть целиком возложены на автоматические устройства. Поэтому в системах управления технологическими процессами применяют управляющие вычислительные комплексы (УВК). Такие системы управления получили название автоматизированных систем управления технологическими процессами (АСУТП). АСУТП предназначены для выработки и реализации управляющих воздействий на технологический объект управления в соответствии с принятым критерием управления (оптимальности) и с помощью современных средств сбора и переработки информации (в первую очередь средств вычислительной техники). На верхнем иерархическим уровне (III) осуществляется управление всем предприятием. Объектом управления здесь является все производство и оборудование, а также АСУТП предыдущего иерархического уровня. Здесь решаются задачи управления всем производством в целом с применением ЭВМ и участием операторов. При этом решаются задачи не только технологического управления отдельными производствами, но и планово-экономические задачи, обеспечивается эффективность работы всего предприятия. Система управления этого уровня получила название автоматизированной системы управления предприятием (АСУП).Из сказанного видна роль локальных АСР нижнего иерархического уровня в общем процессе управления промышленным предприятием: они являются периферийными органами управления, через которые реализуются решения, принимаемые в процессе управления на более высоких иерархических уровнях.

^ 6. Основные принципы управления

Теория автоматического управления изучает принципы построения систем автоматического управления (САУ) и методы исследования процессов в этих системах; решает задачи синтеза, анализа, коррекции, экспериментального исследования и наладки САУ.Автоматическая система, которая в течение длительного времени требуемым образом изменяет или поддерживает неизменными какие-либо физические величины (координаты движущегося объекта, скорость движения, электрическое напряжение, частоту, температуру, давление и пр.) в управляемом процессе или системе, называется системой автоматического управления. САУ осуществляет управление без участия человека и формирует воздействия, обеспечивающие требуемый режим работы объекта управления – изменение выходных величин, характеризующих состояние объекта управления, в соответствии с заданным законом или обеспечение постоянства какой–либо выходной величины. САУ состоит из управляющих устройств (УУ) и объекта управления (ОУ). Величины, характеризующие состояние ОУ, называются выходными или управляемыми. Воздействия, поступающие на вход УУ, называются задающими. Воздействия, вырабатываемые УУ и непосредственно изменяющие состояние ОУ, называются управляющими. Воздействия, вызывающее несанкционированное отклонение управляемой величины от заданного значения, называются возмущающими воздействиями. Задающие и возмущающие воздействия объединяют в группу входных воздействий. Задача управления, по существу, заключается в формировании такого закона изменения управляющего воздействия, при котором обеспечивается заданный алгоритм при наличии возмущающих воздействий. Для решения этой задачи используются три фундаментальных принципа управления: разомкнутое управление, управление по возмущению (принцип компенсации) и замкнутое управление (принцип обратной связи или управление по отклонению).Сущность принципа разомкнутого управления состоит в том, что управление строится только на основе заданного алгоритма функционирования и не контролируется по фактическому значению управляемой величины, то есть текущее состояние ОУ не учитывается при выработке управляющих воздействий. Процесс работы системы не зависит непосредственно от результата ее воздействия на объект управления. Задатчик алгоритма функционирования ЗАФ подает задающее воздействие x(t), которое преобразуется управляющими устройствами в управляющее воздействие z(t). Под воздействием управления состояние объекта управления ОУ, характеризуемое управляемой величиной y(t), изменяется так, чтобы значение y(t) было равно требуемому значению, величина которого определяется задающим воздействием x(t). Наличие возмущающего воздействия f(t) приводит к тому, что действительное значение управляемой величины y(t) отличается от заданного, то есть появляется ошибка управления. Если действие возмущений является постоянным или периодическим, ошибка управления накапливается, и, в пределе, может произойти отказ системы. Таким образом, принцип разомкнутого управления неприменим в условиях значительных помех и возмущений. В отсутствии возмущений воспроизведение заданной величины обеспечивается жесткостью характеристик устройств, входящих в состав схемы. Разомкнутое управление в чистом виде применяется редко и только в простых схемахПри реализации управления по отклонению управляющее воздействие на ОУ вырабатывается как функция отклонения управляемой величины от заданного значения. Схема управления содержит обратную связь, то есть управляемая величина с выхода системы подается на ее вход (рис.3.). Система управления по отклонению является, таким образом, замкнутой.На входе системы элементом сравнения ЭС производится вычитание x(t)-y(t)=e(t). Величина e(t) называется рассогласованием. Управляющие устройства УУ работают таким образом, чтобы все время сводить рассогласование к нулю. Обратная связь такого типа называется отрицательной. Универсальность и эффективность принципа управления по отклонению состоит в том, что он позволяет осуществить заданный закон изменения управляемой величины y(t) независимо от того, изменение какого из входных воздействий – задающего x(t) или возмущающего f(t) – вызвало возникновение рассогласования. САУ по отклонению реагирует на интегрированное внешнее воздействие, проявляющееся в изменении контролируемой (измеряемой) управляемой величины. К достоинствам САУ по отклонению относятся простота технической реализации и высокая точность управления.К недостаткам систем с обратной связью следует отнести недостаточную оперативность, обусловленную тем, что действие системы направлено на ликвидацию рассогласования. То есть САУ сначала допускает изменение управляемой величины под воздействием внешних или внутренних возмущений, а потом его ликвидирует. При управлении по отклонению влияние возмущающих воздействий на выходную величину в значительной мере ослабляется, но не устраняется.В случае, когда изменение состояния ОУ под действием одного или нескольких определенных возмущений недопустимо, используют принцип управления по возмущению. Сущность принципа состоит в том, что измеренное датчиком возмущение преобразуется в воздействие, подаваемое на УУ, которое формирует управляющее воздействие z(t) с учетом возмущающего воздействия. z(t) подается на вход ОУ с целью компенсации (предотвращения) влияния данного возмущения на управляемую величину y(t)..Принцип управления по возмущению ориентирован не на следствие, как принцип обратной связи, а на причину, нарушающее равновесие объекта управления, т.е. основное возмущающее воздействие, и преобразование его в управляющее воздействие. К достоинствам САУ, реализованных по принципу возмущения, относится бόльшая оперативность по сравнению с системами ОС.Недостатком систем управления по возмущению является то, что они компенсируют влияние одного или нескольких заранее определенных возмущений и не могут предотвратить влияние на управляемую величину других возмущающих воздействий. При этом ошибка управления имеет место даже при учете всех возмущений, так как система не может противостоять изменению внутренних свойств УУ и ОУ. Улучшение качества управления в условиях действия возмущений может быть достигнуто с использованием комбинированного управления. В системах комбинированного управления на вход управляющих устройств, помимо рассогласования, вычисляемого по задающему воздействию и сигналу обратной связи, поступает сигнал, получаемый путем измерения возмущающих воздействий. Обычно в комбинированных схемах измеряется только основное возмущение, влияние остальных возмущений учитывается по цепи обратной связи.Класс автоматических систем, построенных на основе принципа замкнутого управления, получил название систем автоматического регулирования (САР).

^ 7. Общие понятия о системах САР. Функциональная схема замкнутой автоматической системы регулирования (САР). Автоматическим регулированием называется поддержание постоянной некоторой заданной величины, характеризующей процесс, или изменение ее по заданному закону, осуществляемое с помощью измерения состояния объекта при действующих на него возмущениях. Системой автоматического регулирования (САР) называется замкнутая динамическая система , в которой поддерживается постоянное значение одной или нескольких величин, характеризующих проте кание какого-либо процесса в течение длительного времени при произвольно меняющихся внешних возмущающих факторах. Каждый автоматический регулятор , работая на конкретном объекте, образует с ним систему (контур) регулирования. Таким образом, система автоматического регулирования состоит из объ екта регулирования и автоматического регулятора. В процессе регулирования регулятор и объект регулирования взаимосвязаны и, следовательно, качество регулирования зависит как от свойств данного объекта, так и от свойств и характеристики применяемого регулятора и регулирующего органа. Регулирующее устройство перерабатывает получаемую через измерительное и преобразующее устройства (датчики и усилители) информацию по определенному заложенному в нем алгоритму (закону) регулирования и через исполнительный механизм (например, электродвигатель) воздействует на объект с помощью регулируемого органа (задвижки, клапана).


системы автоматического регулирования

^ 8. Понятие обратной связи. Классификация (САР). В зависимости от основной цели задачи управления САР классифицируются следующим образом: системы стабилизации, система программного управления, следящие системы. В системах стабилизации рабочий параметр объекта (регулируемая величина) поддерживается постоянным во времени при постоянном .В системах программного управления рабочий параметр объекта изменяется во времени по заранее известному закону, в соответствии с которым изменяется задание.В следящих системах рабочий параметр объекта изменяется во времени по заранее неизвестному закону, который определяется каким-то внешним независимым процессом.В зависимости от характера действия различных элементов, входящих в систему регулирования, различают системы непрерывного и дискретного действия. Непрерывная система автоматического регулирования состоит только из звеньев непрерывного действия, выходная величина которых изменяется при плавном изменении входной величины.Дискретная система содержит хотя бы одно звено дискретного действия, выходная величина которого изменяется скачками (дискретами) при плавном изменении входной величины. Дискретные системы в свою очередь, могут быть релейными, импульсными или цифровыми. Вследствие бурного развития микроэлектроники широкое распространение получили цифровые системы управления, обладающие, прежде всего высокой точностью.Важным свойством также является поведение параметров системы во времени.Если в период эксплуатации параметры являются неизменными, то система считается стационарной , в противном случае - нестационарной. Кроме того, особо выделяются системы с распределенными параметрами, т.е. такие системы, которые содержат распределенные в пространстве элементы, например, длинные электрические линии и т.д.По способу математического описания системы регулирования делятся на линейные и нелинейные .В зависимости от характера внешних воздействий (задающего и возмущающего) различают детерминированные и стохастические системы. В детерминированных САР внешние воздействия имеют вид постоянных функций времени. В стохастических системах внешние воздействия имеют вид случайных функций. В дальнейшем будут рассматриваться только детерминированные системы.По свойствам ошибки (отклонения) в установившемся режиме различают статические и астатические системы . Система, в которой величина установившейся ошибки зависит то величины возмущения при постоянном задании, называется статической по возмущению. Если установившаяся ошибка не зависит от величины возмущения, то система является астатической 1-ого порядка. Если установившаяся ошибка не зависит от первой производной возмущающего воздействия, то система является астатической 2-го порядка.

^ 9. Понятия о многоконтурных САР и экстремальном регулировании.

По числу контуров прохождения сигналов АСР делят на: одноконтурные (если она состоит из одного контура регулирования) и многоконтурные . Многоконтурные АСР могут применяться и для регулирования одной величины с целью повышения качества переходного процесса.По числу регулируемых величин различают одномерные и многомерные системы автоматического регулирования. В свою очередь многомерные САР делятся на системы несвязанного и связанного регулирования. Характерным для первых является то, что регуляторы в них непосредственной связи между собой не имеют и взаимодействуют только через объект регулирования. В системах связанного регулирования регуляторы различных параметров одного и того же объекта имеют непосредственные взаимные связи помимо связей через объект регулирования.Наряду с рассмотренными системами автоматического регулирования применяются также экстремальные системы. Оптимальный режим работы объекта характеризуется экстремальным (максимальным или минимальным) значением показателя эффективности процесса, протекающего в объекте. Вследствие влияния возмущений оптимальный режим работы объектов нарушается. Системы стабилизации не способны скомпенсировать такие отклонения. Для отыскания оптимального режима служат экстремальные системы . Эта задача решается автоматическим поиском таких значений управляющих воздействий, которые соответствуют экстремальному значению показателя эффективности процесса. Системы, осуществляющие автоматический поиск нескольких управляющих величин объекта с целью обеспечения экстремального значения показателя эффективности протекающего в нем процесса, называются оптимальными. На практике же оптимизируемая величина объекта часто зависит не от нескольких, а от одной управляющей величины; такие оптимальные системы называют экстремальными системами.

^ 10. Математическое описание САР и их элементов Целью рассмотрения систем автоматического регулирования может быть решение одной из двух задач - задачи анализа или синтеза системы . В первом случае имеется система, известны ее параметры, требуется определить свойства системы, например качество переходных процессов, устойчивость, точность. Во втором случае, наоборот, задаются свойства системы и необходимо создать систему, удовлетворяющую этим свойствам. Эта задача, как правило, неоднозначна и много сложнее задачи анализа.В самом общем виде порядок исследования системы регулирования включает математическое описание системы, исследование установившихся и переходных режимов.Под математическим описанием понимают дифференциальное уравнение или систему дифференциальных уравнений высокого порядка, описывающую систему регулирования.Для упрощения математического описания систему разбивают на отдельные элементы – звенья, каждые из которых выполняют свои самостоятельные функции. Они описываются либо аналитически в виде дифференциальных уравнений не выше 2-го порядка, либо графически в виде характеристик, связывающих входные и выходные величины звена. Главное требование, которому должны удовлетворять звенья системы регулирования, - это требование направленности действия. Звеном направленного действия называется звено, которое передает воздействие только в одном направлении - со входа на выход, так что при последовательном соединении X звеньев изменение состояния последующего звена не влияет на состояние предшествующего звена.В результате при разбивке системы на звенья направленного действия математическое описание каждого звена может быть составлено без учета его связей с другими звеньями. При этом математическое описание всей системы регулирования может быть получено как совокупность дифференциальных уравнений или характеристик отдельных звеньев, дополненных уравнениями связи между звеньями.

^ 11. Методика получения математических моделей статики и динамики. Понятия о линейных элементах. Свойства систем автоматического регулирования определяются статическими и динамическими характеристиками звеньев, входящих в систему, причем объект управления рассматривается как составное звено системы управления.Статической характеристикой элемента (технического устройства) называется зависимость его выходной величины от входной в равновесных состояниях, то есть:
Статическая характеристика может быть представлена уравнением, графиком или таблицей. При графическом изображении статической характеристики по оси абсцисс откладывают значения входной величины , а по оси ординат – значения выходной величины . Статическая характеристика называется линейной, если зависимость между и линейна (графически она представляет собой прямую линию). Элемент с такой характеристикой также называется линейным .Если характеристика описывается нелинейным уравнением или системой уравнений, а ее график есть кривая или ломаная линия, то такая характеристика называется нелинейной, а элемент – нелинейным. Возможные характеристики линейного и нелинейного элементов показаны на рис.6.

Рис. 6 – Статические характеристики элементов:

А – линейная, б, в, г, д, е – нелинейные.

Уравнение линейной статической характеристики имеет вид:

Где - коэффициент пропорциональности, называемый коэффициентом усиления.

Для нелинейных элементов математическая запись статической характеристики может быть различной в зависимости от вида нелинейности.

Большинство элементов, входящих в САР, в большей или меньшей степени нелинейны.

Учитывая, что расчеты САР производятся для сравнительно небольших отклонений переменных величин от их базовых значений (, ), поэтому уравнения записываются не в абсолютных значениях переменных, а в их абсолютных отклонениях:

Нелинейные элементы с плавно изменяющимися характеристиками можно рассматривать как имеющие линейную статическую характеристику. При этом линеаризацию статической характеристики можно производить не на всем диапазоне значений входных и выходных величин, а на небольшом участке в окрестности точки, соответствующей равновесному состоянию.

На рис.6. (в) небольшой участок нелинейной характеристики около точки А (базовых значениях и ) можно считать линейным. Он совпадает с касательной, проведенной к кривой в этой точке. Коэффициент усиления линейного участка характеристики определяется здесь как тангенс угла наклона
касательной к оси абсцисс:

В дальнейшем мы будем рассматривать элементы, характеристики которых линейны или могут быть линеаризованы с допустимой степенью точности.

Системы регулирования, состоящие из таких элементов, называются линейными (или линеаризованными).

^ 12. Динамические характеристики динамических элементов, передаточные функции. Так как САР являются динамическими системами, знания одних только статических свойств элементов САР недостаточно. Необходимо знать динамические свойства элементов САР, оцениваемые динамическими характеристиками.Динамической характеристикой элемента называют зависимость изменения во времени выходной величины от изменения входной в переходном режиме, т.е. при переходе из одного состояния в другое; характер изменения входной величины может быть разным.Динамические свойства элементов (и САР в целом) могут быть представлены дифференциальными уравнениями, с помощью которых описываются переходные процессы в элементах. Поэтому задача определения динамической характеристики того или иного элемента системы сводится к составлению его дифференциального уравнения на основании знания принципа действия и физических законов, положенных в основу работы элемента.Рассмотрим схему звена, изображенного на рис.7. Описанием звена служит дифференциальное уравнение, связывающее выходную величину Y и входную X . Пусть, например, связь между X и Y выражается уравнением 2-го

^ 13. Преходные процессы. Показатели качества переходного процесса.

14. Частотные характеристики систем. Помимо уравнений динамические свойства линейных звеньев могут быть описаны графическими характеристиками двух типов: переходными и частотными.Переходная, или временная характеристика f(t) представляет собой график изменения во времени выходной величины звена, вызванного подачей на его вход единичного ступенчатого воздействия.Если на вход звена подается гармоническое возмущение, то исследование динамики осуществляется частотными методами с использованием частотных характеристик основных типов: амплитудно-частотной (АЧХ), фазочастотной (ФЧХ), амплитудно-фазовой (АФХ), вещественной частотной (ВЧ), и мнимой частотной (МЧ).Частотные характеристики описывают установившиеся вынужденные колебания на выходе звена при подаче на его вход гармонического воздействия:Следует отметить, что для линейных звеньев существует однозначная связь между дифференциальным уравнением, временными и частотными характеристиками звена. Это означает, что, зная дифференциальное уравнение (или передаточную функцию) звена, можно построить переходную или амплитудно-фазовую характеристику звена и наоборот.

^ 15.Типовые звенья САР(усилительное, апериодическое, интегрирующее, запаздывания, колебательное). Динамические характеристики звеньев. Типовым динамическим звеном САР является составная часть системы, которая описывается дифференциальным уравнением не выше второго порядка. Звено, как правило, имеет один вход и один выход. По динамическим свойствам типовые звенья делятся на следующие разновидности:

Монтаж систем автоматизации должен производится в соответствии с рабочей документацией с учетом требований предприятий - изготовителей приборов, средств автоматизации, агрегатных и вычислительных комплексов, предусмотренных техническими условиями или инструкциями по эксплуатации этого оборудования.

Работы по монтажу следует выполнять индустриальным методом с использованием средств малой механизации, механизированного и электрифицированного инструмента и приспособлений, сокращающих применение ручного труда.

Работы по монтажу систем автоматизации должны осуществляться в две стадии (этапа):

На первой стадии следует выполнять: заготовку монтажных конструкций, узлов и блоков, элементов электропроводок и их укрупнительную сборку вне зоны монтажа; проверку наличия закладных конструкций, проемов, отверстий в строительных конструкциях и элементах зданий, закладных конструкций и отборных устройств на технологическом оборудовании и трубопроводах, наличия заземляющей сети; закладку в сооружаемые фундаменты, стены, полы и перекрытия труб и глухих коробов для скрытых проводок; разметку трасс и установку опорных и несущих конструкций для электрических и трубных проводок, исполнительных механизмов, приборов.

На второй стадии необходимо выполнять: прокладку трубных и электрических проводок по установленным конструкциям, установку щитов, стативов, пультов, приборов и средств автоматизации, подключение к ним трубных и электрических проводок, индивидуальные испытания.

Смонтированные приборы и средства автоматизации электрической ветви Государственной системы приборов (ГСП), щиты и пульты, конструкции, электрические и трубные проводки, подлежащие заземлению согласно рабочей документации, должны быть присоединены к контуру заземления. При наличии требований предприятий - изготовителей средства агрегатных и вычислительных комплексов должны быть присоединены к контуру заземления. При наличии требований предприятий - изготовителей средства агрегатных и вычислительных комплексов должны быть присоединены к контуру специального заземления.

Приборы и средства автоматизации

В монтаж должны приниматься приборы и средства автоматизации, проверенные с оформлением соответствующих протоколов.

В целях обеспечения сохранности приборов и оборудования от поломки, разукомплектования и хищения монтаж их должен выполняться после письменного разрешения генподрядчика (заказчика).

Проверка приборов и средств автоматизации производится заказчиком или привлекаемыми им специализированными организациями, выполняющими работы по наладке приборов и средств автоматизации методами, принятыми в этих организациях, с учетом требований инструкций Госстандарта и предприятий - изготовителей.

Приборы и средства автоматизации, принимаемые в монтаж после проверки, должны быть подготовлены для доставки к месту монтажа. Подвижные системы должны быть арретированы, присоединительные устройства защищены от попадания в них влаги, грязи и пыли.

Вместе с приборами и средствами автоматизации должны быть переданы монтажной организации специальные инструменты, принадлежности и крепежные детали, входящие в их комплект, необходимые при монтаже.

Размещение приборов и средств автоматизации и их взаимное расположение должны производится по рабочей документации. Их монтаж должен обеспечить точность измерений, свободный доступ к приборам и их запорным и настроечным устройствам (кранам, вентилям, переключателям, рукояткам настройки и т.п.).

В местах установки приборов и средств автоматизации, малодоступных для монтажа и эксплуатационного обслуживания, должно быть до начала монтажа закончено сооружение лестниц колодцев и площадок в соответствии с рабочей документацией.

Приборы и средства автоматизации должны устанавливаться при температуре окружающего воздуха и относительной влажности, оговоренных в монтажно-эксплуатационных инструкциях предприятий-изготовителей.

Присоединение к приборам внешних трубных проводок должно осуществляться в соответствии с требованиями ГОСТ 25164 - 82 и ГОСТ 10434 - 82, ГОСТ 25154 - 82, ГОСТ 25705 - 83, ГОСТ 19104 - 79 и ГОСТ 23517 - 79.

Крепление приборов и средств автоматизации к металлическим конструкциям (щитам, стативам, стендам и т.п.) должно осуществляться способами, предусмотренными конструкцией приборов и средств автоматизации и деталями, входящими в их комплект. Если в комплект отдельных приборов и средств автоматизации крепежные детали не входят, то они должны быть закреплены нормализованными крепежными изделиями.

При наличии вибраций в местах установки приборов резьбовые крепежные детали должны иметь приспособления, исключающие самопроизвольное их отвинчивание (пружинные шайбы, контргайки, шплинты и т.п.).

Отверстия приборов и средств автоматизации, предназначенные для присоединения трубных и электрических проводок, должны оставаться заглушенными до момента подключения проводок.

Корпуса приборов и средств автоматизации должны быть заземлены в соответствии с требованиями инструкций предприятий-изготовителей и СНиП 3.05.06-85.

Чувствительные элементы жидкостных термометров, термосигнализаторов, манометрических термометров, преобразователей термоэлектрических (термопар), термопреобразователей сопротивления должны, как правило, располагаться в центре потока измеряемой среды. При давлении свыше 6 МПа (60 кгс/см 2) и скорости потока пара 40 м/с и воды 5 м/с глубина погружения чувствительных элементов в измеряемую среду (от внутренней стенки трубопровода) должна быть не более 135мм.

Рабочие части поверхностных преобразователей термоэлектрических (термопар) и термопреобразователей сопротивления должны плотно прилегать к контролируемой поверхности.

Перед установкой этих приборов место соприкосновения их с трубопроводами и оборудованием должно быть очищено от окалины и зачищено до металлического блеска.

Преобразователи термоэлектрические (термопары) в фарфоровой арматуре допускается погружать в зону высоких температур на длину фарфоровой защитной трубки.

Термометры, у которых защитные чехлы изготовлены из разных металлов, должны погружаться в измеряемую среду на глубину не более указанной в паспорте предприятия - изготовителя.

Не допускается прокладка капилляров манометрических термометров по поверхностям, температура которых выше или ниже температуры окружающего воздуха.

При необходимости прокладки капилляров в местах с горячими или холодными поверхностями между последними и капилляром должны быть воздушные зазоры, предохраняющие капилляр от нагревания или охлаждения, или должна быть проложена соответствующая теплоизоляция.

По всей длине прокладки капилляры манометрических термометров должны быть защищены от механических повреждений.

При лишней длине капилляр должен быть свернут в бухту диаметром не менее 300мм; бухта должна быть перевязана в трех местах неметаллическими перевязками и надежно закреплена у прибора.

Приборы для измерения давления пара или жидкости по возможности должны быть установлены на одном уровне с местом отбора давления; если это требование невыполнимо, рабочей документацией должна быть определена постоянная поправка к показаниям прибора.

Жидкостные U - образные манометры устанавливаются строго вертикально. Жидкость, заполняющая манометр, должна быть не загрязнена и не должна содержать воздушных пузырьков.

Пружинные манометры (вакуумметры) должны устанавливаться в вертикальном положении.

Разделительные сосуды устанавливаются согласно нормалям или рабочим чертежам проекта, как правило, вблизи мест отбора импульсов. Разделительные сосуды должны устанавливаться так, чтобы контрольные отверстия сосудов располагались на одном уровне и могли легко обслуживаться эксплуатационным персоналом.

При пьезометрическом измерении уровня открытый конец измерительной трубки должен быть установлен ниже минимального измеряемого уровня. Давление газа или воздуха в измерительной трубке должно обеспечить проход газа (воздуха) через трубку при максимальном уровне жидкости. Расход газа или воздуха в пьезометрических уровнемерах должен быть отрегулирован на величину, обеспечивающую покрытие всех потерь, утечек и требуемое быстродействие системы измерения.

Монтаж приборов для физико-химического анализа и их отборных устройств должен производиться в строгом соответствии с требованиями инструкций предприятий - изготовителей приборов.

При установках показывающих и регистрирующих приборов на стене или на стойках, крепящихся к полу, шкала, диаграмма, запорная арматура, органы настройки и контроля пневматических и других датчиков должны находится на высоте 1-1.7м, а органы управления запорной арматурой - в одной плоскости со шкалой прибора.

Монтаж агрегатных и вычислительных комплексов АСУ ТП должен осуществляться по технической документации предприятий-изготовителей.

Все приборы и средства автоматизации, устанавливаемые или встраиваемые в технологические аппараты и трубопроводы (сужающие и отборные устройства, счетчики, ротаметры, поплавки уровнемеров, регуляторы прямого действия и т.п.), должны быть установлены в соответствии с рабочей документацией и с требованиями, указанными в обязательном приложении 5.

Эксплуатация приборов и средств автоматизации

В процессе эксплуатации приборов происходит частичная потеря работоспособности средств измерений и автоматизации, вызванная как длительностью их эксплуатации, так и воздействием окружающих и измеряемых сред. Для обеспечения безотказной работы средств измерений (далее по тексту - СИ) и автоматизации, восстановления их ресурса требуется проведение технического обслуживания.

Техническое обслуживание - это комплекс операций по поддержанию работоспособности и исправности СИ, автоматизации и средств автоматизации и схем СБ и ПАЗ. Осуществляется прибористами КИП и А на технологических установках ОАО «НОРСИ».

Руководящими материалами для проведения технической эксплуатации приборов являются:

Приказ № 325 от 1.11.99. «Об изменении продолжительности межремонтных циклов средствам КИП и А технологических установок»;

Инструкции заводов-изготовителей;

Правила эксплуатации электроустановок потребителей (ПЭЭП);

Правила устройства электроустановок (ПУЭ);

Настоящая инструкция.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Автоматизация химической промышленности

Комплексной автоматизации и механизации производств химической промышленности уделяется огромное внимание, поскольку протекание химико-технологических процессов характеризуется сложностью, высокой скоростью и чувствительностью к отклонениям от заданных режимов, вредностью среды рабочей зоны, взрыво-, пожароопасностью перерабатываемых веществ.

Проблемами автоматизации химической промышленности являются недостаток информации о протекании высоко-сложных технологических процессов химической промышленности, а также трудности при сопоставлении имеющихся данных для проведения качественного анализа деятельности предприятия химической промышленности с целью оптимизации его работы.

Современная автоматизация предприятия химической промышленности широко используется для оптимизации таких важных показателей работы химического предприятия, как уровень безопасности персонала, защита окружающей среды, соответствие стандартам контроля качества. Внедрение автоматизации технологических процессов химической промышленности приводит к снижению себестоимости продукции, а также максимальному повышению эффективности производства товаров массового потребления, спец. химикатов, органических (неорганических) продуктов, как с непрерывными, так и периодическими процессами предприятий химической промышленности.

На основе современных технологий автоматизации химической промышленности ее производственные данные становятся базой для принятия управленческих решений.

Современные системы автоматизированного управления технологическими процессами (АСУ ТП) химической промышленности повышают:

· возможности регулировать качество продукции предприятия химической промышленности согласно требованиям ее технологического регламента;

· надежность работы оборудования предприятия химической промышленности, возможности предупреждения его поломок с целью своевременного проведения плановых ремонтов на основе предоставляемых информационных и программных средств автоматизации химической промышленности.

Предприятия химической промышленности широко применяют различные технологические схемы, главным образом использующие химические методы, в основе которых лежат глубокие качественные изменения, а также превращения веществ и материалов, их состава, свойств, состояния, внутренней структуры.

Химические методы производства позволяют применять разнообразное сырье, включая различные отходы. Некоторые предприятия химической промышленности, использующие горнохимическое сырье, выполняют его переработку, а также добычу, что существенно усложняет структуру таких предприятий и организацию производственного процесса.

Поскольку в результате химических преобразований меняют состояние веществ и целенаправленно получают продукты, обладающие специально заданными свойствами, высокие требования предъявляются к качеству сырья, а также подготовке сырьевой базы. Поэтому правильная организация технического контроля используемого сырья на предприятиях химической промышленности имеет огромное значение.

Ряд производств химической промышленности характеризуется значительным потреблением тепловой, а также электрической энергии, это определяет повышенные требования к организации качественного энергоснабжения предприятия для обеспечения его четкого и бесперебойного функционирования.

Предприятия химической промышленности работают в условиях постоянного присутствия различных опасных веществ; многие технологические процессы протекают при высоких давлениях и температурах. Это определяет повышенные требования к охране труда и технике безопасности на химическом предприятии. Вредные производства особенно требуют внедрения надежных систем автоматизации химических процессов.

Большинство технологических процессов химического производства протекают непрерывно в пределах цеха и всего предприятия в целом. Непрерывность протекания химико-технологических процессов обусловливает большое значение бесперебойного обеспечения химического производства сырьем и материалами, а также особой организации работы обслуживающего персонала.

Особенностью технологического оснащения химических предприятий является применение закрытых аппаратов непрерывного либо периодического действия, что затрудняет непосредственное наблюдение за ходом химико-технологических процессов, состоянием технологического оборудования, а также учетом количества полуфабрикатов, используемых на различных этапах производства. Это обусловливает оснащение технологических аппаратов современными автоматизированными системами управления технологическими процессами (АСУ ТП) химической промышленности. Особые требования предъявляются системам автоматизации химических предприятий для обеспечения систематического контроля исправности технологического оборудования, а также проведения своевременных осмотров и ремонтов.

Сложность, а также разнообразие химико-технологических процессов и технологического оборудования, наличие сложных систем автоматизированного управления технологическими процессами (АСУ ТП) предприятий химической промышленности предъявляют высокие квалификационные требования к обслуживающему персоналу.

Современные и надежные системы автоматизации широко внедряются рядом химических производств, среди них:

· автоматизация химического производства неорганических веществ (АСУ ТП химического производства серной кислоты, АСУ ТП химического производства суперфосфата, АСУ ТП химического производства аммиака, АСУ ТП химического производства аммиачной селитры);

· автоматизация химического производства органических веществ (АСУ ТП химического производства ацетилена, АСУ ТП химического производства бутадиена, АСУ ТП химического производства стирола из этилбензола);

· автоматизация химического производства полимеров и эластомеров (АСУ ТП химического производства полиэтилена высокого давления, АСУ ТП химического производства полипропилена, АСУ ТП химического производства бутадиен-стирольного латекса);

· автоматизация производства химических волокон (АСУ ТП химического производства вискозного волокна, АСУ ТП химического производства полиамидного волокна -- капрона);

· автоматизация химического производства резиновых изделий (АСУ ТП химического производства автомобильных шин, АСУ ТП химического производства резиновых технических изделий);

· автоматизированная система управления технологическими процессами (АСУ ТП) переработки пластмасс.

Подобные документы

    Автоматизация химической промышленности. Назначение и разработка рабочего проекта установок гидрокрекинга, регенерации катализатора и гидродеароматизации дизельного топлива. Моделирование системы автоматического регулирования. Выбор средств автоматизации.

    курсовая работа , добавлен 16.08.2012

    Значение химической и нефтехимической промышленности. Структура отрасли. Размещение химической и нефтехимической промышленности. Влияние химической и нефтехимической промышленности на окружающую среду. Современное состояние и тенденции развития.

    реферат , добавлен 27.10.2004

    Характеристика особенностей и тенденций развития химической промышленности Украины - комплексной отрасли, которая определяет, наряду с машиностроением, уровень НТП и обеспечивает все отрасли народного хозяйства химическими технологиями и материалами.

    реферат , добавлен 31.05.2010

    Механизация и автоматизация в химической промышленности. Автоматизация процесса абсорбции циклогексана и циклогексанона. Производство работ и монтаж объекта автоматизации. Монтаж элементов объекта, диагностика систем, эксплуатация, метрологический надзор.

    курсовая работа , добавлен 10.04.2011

    Применение FnsysIcem для проектирования и расчета конструкций, интерфейс программы. Полное построение модели двойного тигля, служащего в химической промышленности для изготовления световолокна. Создание геометрии, блоков, построение сетки, экспорт в CFX.

    курсовая работа , добавлен 27.11.2009

    Нефть как жидкое горючее полезное ископаемое. Анализ роста производства отечественной химической и нефтехимической продукции. Организация и проведение большого числа специализированных выставок как характерная особенность рынка химических товаров.

    контрольная работа , добавлен 02.12.2012

    Отрасли машиностроительной, химической и оборонной промышленности как ведущие звенья материально-технической базы современной экономики. Техническая и организационная культура. Система взаимосвязанных отраслей промышленности и сельского хозяйства.

    реферат , добавлен 14.12.2010

    Краткая характеристика объекта автоматизации. Серная кислота как один из важнейших продуктов химической технологии, который находит широкое применение в промышленности. Основные технические решения по автоматизации. Функциональная схема автоматизации.

    контрольная работа , добавлен 06.08.2013

    Схема действия процессов химической завивки на волосы. Изменение структуры волоса во время химической завивки. Действие дополнительных препаратов для улучшения качества химической завивки. Группы средств для химической завивки и их характеристика.

    презентация , добавлен 27.03.2013

    Переработка сырьевых материалов и получение продуктов, которые сопровождаются изменением химического состава веществ. Предмет и основные задачи химической технологии. Переработка углеводородов, устройство коксовой печи. Нагрузка печей угольной шихтой.

Автоматизация - это применение комплекса средств, позволяющих осуществлять производственные процессы без непосредственного участия человека, но под его контролем. Автоматизация производственных процессов приводит к увеличению выпуска, снижению себестоимости и улучшению качества продукции, уменьшает численность обслуживающего персонала, повышает надежность и долговечность машин, дает экономию материалов, улучшает условия труда и техники безопасности.

Автоматизация освобождает человека от необходимости непосредственного управления механизмами. В автоматизированном процессе производства роль человека сводится к наладке, регулировке, обслуживании средств автоматизации и наблюдению за их действием. Если автоматизация облегчает физический труд человека, то автоматизация имеет цель облегчить так же и умственный труд. Эксплуатация средств автоматизации требует от обслуживающего персонала высокой техники квалификации.

По уровню автоматизации теплоэнергетика занимает одно из ведущих мест среди других отраслей промышленности. Теплоэнергетические установки характеризуются непрерывностью протекающих в них процессов. При этом выработка тепловой и электрической энергии в любой момент времени должна соответствовать потреблению (нагрузке). Почти все операции на теплоэнергетических установках механизированы, а переходные процессы в них развиваются сравнительно быстро. Этим объясняется высокое развитие автоматизации в тепловой энергетике.

Автоматизация параметров дает значительные преимущества:

1) обеспечивает уменьшение численности рабочего персонала, т.е. повышение производительности его труда,

2) приводит к изменению характера труда обслуживающего персонала,

3) увеличивает точность поддержания параметров вырабатываемого пара,

4) повышает безопасность труда и надежность работы оборудования,

5) увеличивает экономичность работы парогенератора.

Автоматизация парогенераторов включает в себя автоматическое регулирование, дистанционное управление, технологическую защиту, теплотехнический контроль, технологические блокировки и сигнализацию.

Автоматическое регулирование обеспечивает ход непрерывно протекающих процессов в парогенераторе (питание водой, горение, перегрев пара и др.)

Дистанционное управление позволяет дежурному персоналу пускать и останавливать парогенераторную установку, а так же переключать и регулировать ее механизмы на расстоянии, с пульта, где сосредоточены устройства управления.

Теплотехнический контроль за работой парогенератора и оборудования осуществляется с помощью показывающих и самопишущих приборов, действующих автоматически. Приборы ведут непрерывный контроль процессов, протекающих в парогенераторной установке, или же подключаются к объекту измерения обслуживающим персоналом или информационно-вычислительной машиной. Приборы теплотехнического контроля размещают на панелях, щитах управления по возможности удобно для наблюдения и обслуживания.

Технологические блокировки выполняют в заданной последовательности ряд операций при пусках и остановках механизмов парогенераторной установки, а так же в случаях срабатывания технологической защиты. Блокировки исключают неправильные операции при обслуживании парогенераторной установки, обеспечивают отключение в необходимой последовательности оборудования при возникновении аварии.

Устройства технологической сигнализации информируют дежурный персонал о состоянии оборудования (в работе, остановлено и т.п.), предупреждают о приближении параметра к опасному значению, сообщают о возникновении аварийного состояния парогенератора и его оборудования. Применяются звуковая и световая сигнализация.

Эксплуатация котлов должна обеспечивать надежную и эффективную выработку пара требуемых параметров и безопасные условия труда персонала. Для выполнения этих требований эксплуатация должна вестись в точном соответствии с законоположениями, правилами, нормами и руководящими указаниями, в частности, в соответствии с «Правилами устройства и безопасной эксплуатации паровых котлов» Госгортехнадзора, «Правилами технической эксплуатации электрических станций и сетей», «Правилами технической эксплуатации теплоиспользующих установок и тепловых сетей» .

Все предприятия химической промышленности уже на современном уровне, для того, чтобы производить конкурентоспособную, продукцию, в необходимых количествах, обязательно должны вносить в производственный процесс автоматизированные системы, такие как АСУ ТП для предприятий химической промышленности.

Именно поэтому на современном уровне автоматизация технологических процессов предприятий химической отрасли является актуальной задачей. Автоматизированные системы призваны обеспечить более высокое качество выпускаемой продукции, снижение производственных затрат, повышать рентабельность предприятия, а также обезвредить и минимизировать отходы в этой отрасли.

В химической промышленности могут быть использованы различные средства автоматизации, и их выбор чаще всего обосновывается не только на предпочтениях руководства, но и на вопросах повышения эффективности и рентабельности выпускаемой продукции.

Какие системы автоматизации могут быть востребованы в предприятиях химических отраслей

Автоматизированные системы управления транспортными потоками;

Автоматизированные системы подающих устройств питателей или конвейеров;

Автоматизация и визуализация производственных процессов при помощи специального программного обеспечения;

Автоматизация и внедрение АСУ ТП на весовые устройства и на дозировочные устройства подачи элементов;

Автоматизация кабельных трасс;

Оснащение рабочего места оператора компьютерным оборудованием и автоматизация производственной линии;

И множество других элементов автоматизации и внедрения систем АСУ ТП может быть актуально для предприятий химической промышленности.

Созданные специалистами нашей компании, автоматизированные системы призваны обеспечивать бесперебойную работу предприятия, поэтому техническое обслуживание производится нашими специалистами.

Документирование в автоматизированных системах управления технологических процессов химической промышленности

Для обеспечения участия человека в управлении технологическим процессом необходимо документирование информации. Для последующих анализов требуется накопление статистических исходных данных посредством регистрации состояний и значений параметров процесса во времени. На основании этого проверяется соблюдение регламента технологического процесса, анализируется формирование качества продукции, контролируются действия персонала в аварийных ситуациях, осуществляется поиск направлений совершенствования процесса и т. п.

При разработке той части информационного обеспечения АСУ ТП, которая связана с документированием и регистрацией, необходимо следующее:

  • определить вид регистрируемых параметров, место и форму регистрации;
  • выбрать временной фактор регистрации (датирование, интервалы регистрации, длительность непрерывной регистрации);
  • минимизировать количество регистри­руемых параметров из соображений необходимости и достаточности для оперативных действий и последующего анализа.

Минимизация в данном случае означает, что выбираются для регистрации только те параметры, которых достаточно для опера­тивного управления технологическим про­цессом и последующего его анализа. Уменьшить это число параметров нельзя, так как снижается качество управления процессом; увеличивать также нельзя, так как необоснованно растет стоимость управления.

Выбрать способ группировки документи­рованной информации с точки зрения удобства использования ее человеком и машиной.

При этом определяющими факторами являются сложность и динамика технологи­ческого процесса, возможности технических средств и человека-оператора, назначение и возможности анализа, экономические и временные факторы.

Единые и исчерпывающие правила разра­ботки документирования в автоматизированных системах управления технологическими процессами отсут­ствуют, однако значительная часть важных формальных положений может быть почерп­нута из серии ГОСТов по ЕСКД и УСД.

Типичной при документировании являет­ся регистрация даты, единого текущего времени в автоматизированных системах управления технологическими процессами (час, минута, секунда), ко­да точки измерения, кода объекта (при необ­ходимости), наименования параметра (при необходимости), текущего значения параме­тра (абсолютного или относительного от­клонения от норматива), единицы измерения, признака юстирования (при необходимости). В зависимости от условий формирования и назначения документа некоторые из ука­занных реквизитов могут быть заранее вве­дены в бланк документа или исключены из него, если он предназначен только для даль­нейшей машинной обработки.

При разработке системы документирова­ния унифицируются форматы документов

и общие для них реквизиты, структуры доку­ментов. Уделяется внимание обозримости и наглядности документов, в частности, за счет использования табличных форм. В документах, предназначенных для машинной обработки, вводятся специальные реквизиты: код документа в системе обработки, код вида анализа, графы, заполняемые на программируемых контроллерах, и др. Решаются вопросы классификации (группи­ровки) документов и маршрутов их движе­ния. Определяются объемы информации в документах и потоках документов. Устана­вливается место и сроки хранения докумен­тов.